Publications

The exceptional mechanical properties of transition metal carbide coatings are known to be governed by the carbon content and its morphological distribution. Here, we verify the influence of the target peak power density on the chemical composition, microstructure, and mechanical properties of NbCx coatings grown by non-reactive high-power impulse magnetron sputtering (HiPIMS). By tuning the pulse parameters, the power density can be increased from 0.11 to 1.48 kW/cm2 leading to a decrease in the C/Nb ratio from 1.52 to 0.99 within the films – proven by combined elastic backscattering and time-of-flight elastic recoil detection analysis. This decrease in the C/Nb ratio is accompanied by microstructural changes from nanocomposite morphologies with an average grain size of 6.6 ± 2.5 nm at 0.13 kW/cm2 into more columnar structures with an average column width of 65.2 ± 18.7 nm at 1.48 kW/cm2. Independent from the C/Nb ratio, all films exhibit a single face-centered cubic structure. The mechanical properties correlate with the enhanced growth behavior dominated by ions at higher peak power densities and the varied C/Nb ratios. A maximum in hardness and fracture toughness of H = 38.7 ± 3.6 GPa and KIc = 2.78 ± 0.13 MPa∙m1/2 (at 3.2 GPa residual compressive stress), is obtained for the nearly stoichiometric NbC coating exhibiting C/Nb ratio of 1.06.

Authors

A. Bahr, T. Glechner, T. Wojcik, A. Kirnbauer, M. Sauer, A. Foelske, O. Hunold, J. Ramm, S. Kolozsvári, E. Ntemou, E. Pitthan, D. Primetzhofer, H. Riedl, R. Hahn

Journal

Surface and Coatings Technology

Text